Sections 2.6 & 3.6

Derivatives and Limits of Trigonometric Functions

(1) Trigonometric Limit Identities (2) Derivatives of Trigonometric Functions (3) Derivatives of Inverse Trigonometric Functions

Trigonometric Limits

Two Key Trigonometric Limits $\lim_{x\to 0}$ $sin(x)$ x $= 1$ \lim $x \rightarrow 0$ $\cos(x)-1$ x $= 0$

Derivative of the Sine and Cosine Functions

$$
\frac{d}{dx}(\sin(x)) = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}
$$
\n
$$
= \lim_{h \to 0} \frac{\sin(x) \cos(h) + \cos(x) \sin(h) - \sin(x)}{h}
$$
\n
$$
= \sin(x) \left[\left(\lim_{h \to 0} \frac{\cos(h) - 1}{h} \right) + \cos(x) \left[\left(\lim_{h \to 0} \frac{\sin(h)}{h} \right) \right] \right]
$$
\n
$$
= \cos(x).
$$

A similar calculation shows that $\frac{d}{dx}(\cos(x)) = -\sin(x)$.

Derivatives of Trigonometric Functions

$$
\frac{d}{dx}(\sin(x)) = \cos(x) \qquad \frac{d}{dx}(\cos(x)) = -\sin(x)
$$

$$
\frac{d}{dx}(\tan(x)) = \sec^2(x) \qquad \frac{d}{dx}(\cot(x)) = -\csc^2(x)
$$

$$
\frac{d}{dx}(\sec(x)) = \sec(x)\tan(x) \qquad \frac{d}{dx}(\csc(x)) = -\csc(x)\cot(x)
$$

These identities can be obtained from the derivatives of $sin(x)$ and $cos(x)$, using the definitions of the other trigonometric functions and the identity $\sin^2(x) + \cos^2(x) = 1$.

Derivative of the Tangent Function

$$
\frac{d}{dx}(\tan(x)) = \frac{d}{dx}\left(\frac{\sin(x)}{\cos(x)}\right)
$$
 Use the Quotient Rule:

$$
= \frac{\cos(x)\left(\frac{d}{dx}(\sin(x))\right) - \sin(x)\left(\frac{d}{dx}(\cos(x))\right)}{\cos^2(x)}
$$

$$
= \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)} = \sqrt{\sec^2(x)}
$$

Derivatives of Other Trigonometric Functions

$$
\frac{d}{dx}(\sec(x)) = \frac{d}{dx}(\cos(x)^{-1})
$$
\nUse the Chain Rule:
\n
$$
= -(\cos(x)^{-2}) \cdot \frac{d}{dx}(\cos(x))
$$
\n
$$
= \frac{-\sin(x)}{-\cos^{2}(x)} = \left(\frac{1}{\cos(x)}\right)\left(\frac{\sin(x)}{\cos(x)}\right) = \boxed{\sec(x)\tan(x)}
$$

The derivatives of $\operatorname{\sf csc}(x) = \frac{1}{\sin(x)}$ and $\operatorname{\sf cot}(x) = \frac{1}{\tan(x)}$ can be calculated in similar ways.

Example 1

$$
(\mathsf{I})\;\frac{d}{d x}\left(\cos\left(e^{\tan(x)}\right)\right) \;=\;
$$

$$
(II) \frac{d}{dx} (\sec^2(4x)) =
$$

$$
\frac{d}{dx}\left(\sin^2(4x)+\cos^2(4x)\right) =
$$

$$
(\text{IV})\,\,\frac{d^2}{dx^2}\left(\sin(x)\right) =
$$

Example 2

A ladder is 20 feet long and rests against a vertical wall. Let θ be the angle between the top of the ladder and the wall. If the bottom of the ladder slides away from the wall so that the angle increases at a rate of 1 radian/second, how fast is the bottom of the ladder moving when $\theta = \frac{\pi}{3}$?

Let x be the distance from the base of the ladder to the wall.

Trigonometric Limits

More Trigonometric Limits

More Trigonometric Limits

More Trigonometric Limits

Derivatives of Inverse Trigonometric Functions

The arcsine, arccosine and arctangent functions are defined as inverses of the basic trigonometric functions.

Warning: Do not confuse arcsin (θ) with $\frac{1}{\sin(\theta)} = \csc(\theta)!$

The graphs of $sin(x)$, $cos(x)$ and $tan(x)$ do not pass the Horizontal Line Test. Therefore, in order to define inverse functions, we must restrict their domains.

Arcsine

Domain: $-1 \leq x \leq 1$ Range: $\frac{-\pi}{2}$ $\frac{-\pi}{2} \leq y \leq \frac{\pi}{2}$ 2

Arccosine

- Domain: $-1 \leq x \leq 1$
- Range: $0 \le y \le \pi$

Arctangent

- Domain: $-\infty < x < \infty$
- Range: $\frac{-\pi}{2}$ $\frac{-\pi}{2} < y < \frac{\pi}{2}$ 2

Precalculus Review

\n- sin (arcsin(x)) = x
\n- cos (arcsin(x)) =
$$
\sqrt{1 - x^2}
$$
\n- tan (arcsin(x)) = $\frac{x}{\sqrt{1 - x^2}}$
\n

\n- sin (arccos(x)) =
$$
\sqrt{1 - x^2}
$$
\n- cos (arccos(x)) = x
\n- tan (arccos(x)) = $\frac{\sqrt{1 - x^2}}{x}$
\n

 $sin (arctan(x)) = \frac{x}{\sqrt{2}}$ $x^2 + 1$ $cos (arctan(x)) = \frac{1}{\sqrt{2}}$ $x^2 + 1$ • tan ($arctan(x)$) = x

Derivatives of Inverse Trigonometric Functions

We can find the derivative of $y = \arcsin(x)$ by implicit differentiation.

$$
y = \arcsin(x)
$$

\n
$$
\sin(y) = x
$$
 Differentiate both sides:
\n
$$
\cos(y)y' = \frac{d}{dx}(x) = 1
$$

\n
$$
y' = \frac{1}{\cos(y)} = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1 - x^2}}
$$

$$
\frac{d}{dx}(\arcsin(x)) = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx}(\arctan(x)) = \frac{1}{1 + x^2}
$$

$$
\frac{d}{dx}(\arccos(x)) = \frac{-1}{\sqrt{1 - x^2}}
$$

Derivatives of Inverse Trigonometric Functions

