Sections 2.6 & 3.6

Derivatives and Limits of Trigonometric Functions

Trigonometric Limit Identities
 Derivatives of Trigonometric Functions
 Derivatives of Inverse Trigonometric Functions

Trigonometric Limits

Two Key Trigonometric Limits $\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \qquad \lim_{x \to 0} \frac{\cos(x) - 1}{x} = 0$

Derivative of the Sine and Cosine Functions

$$\frac{d}{dx}(\sin(x)) = \lim_{h \to 0} \frac{\frac{\sin(x+h) - \sin(x)}{h}}{\frac{\sin(x) \cos(h) + \cos(x) \sin(h) - \sin(x)}{h}}$$
$$= \lim_{h \to 0} \frac{\frac{\sin(x) \cos(h) + \cos(x) \sin(h) - \sin(x)}{h}}{\frac{\sin(x) \cos(h) - \sin(x)}{h}}$$
$$= \sin(x) \left[\left(\lim_{h \to 0} \frac{\cos(h) - 1}{h} \right) + \cos(x) \left[\left(\lim_{h \to 0} \frac{\sin(h)}{h} \right) \right]$$
$$= \cos(x).$$

A similar calculation shows that $\frac{d}{dx}(\cos(x)) = -\sin(x)$.

Derivatives of Trigonometric Functions

$$\frac{d}{dx}(\sin(x)) = \cos(x) \qquad \qquad \frac{d}{dx}(\cos(x)) = -\sin(x)$$
$$\frac{d}{dx}(\tan(x)) = \sec^2(x) \qquad \qquad \frac{d}{dx}(\cot(x)) = -\csc^2(x)$$
$$\frac{d}{dx}(\sec(x)) = \sec(x)\tan(x) \qquad \qquad \frac{d}{dx}(\csc(x)) = -\csc(x)\cot(x)$$

These identities can be obtained from the derivatives of sin(x) and cos(x), using the definitions of the other trigonometric functions and the identity $sin^2(x) + cos^2(x) = 1$.

Derivative of the Tangent Function

$$\frac{d}{dx}(\tan(x)) = \frac{d}{dx}\left(\frac{\sin(x)}{\cos(x)}\right)$$
 Use the Quotient Rule:

$$= \frac{\cos(x)\left(\frac{d}{dx}(\sin(x))\right) - \sin(x)\left(\frac{d}{dx}(\cos(x))\right)}{\cos^2(x)}$$

$$= \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)} = \sec^2(x)$$

Derivatives of Other Trigonometric Functions

$$\frac{d}{dx}(\sec(x)) = \frac{d}{dx}(\cos(x)^{-1})$$
Use the Chain Rule:

$$= -(\cos(x)^{-2}) \cdot \frac{d}{dx}(\cos(x))$$

$$= \frac{-\sin(x)}{-\cos^{2}(x)} = \left(\frac{1}{\cos(x)}\right) \left(\frac{\sin(x)}{\cos(x)}\right) = \boxed{\sec(x)\tan(x)}$$

The derivatives of $\csc(x) = \frac{1}{\sin(x)}$ and $\cot(x) = \frac{1}{\tan(x)}$ can be calculated in similar ways.

Example 1

(I)
$$\frac{d}{dx} \left(\cos \left(e^{\tan(x)} \right) \right) =$$

$$(II) \ \frac{d}{dx} \left(\sec^2(4x) \right) =$$

$$(III) \frac{d}{dx} \left(\sin^2(4x) + \cos^2(4x) \right) =$$

$$(\mathsf{IV}) \ \frac{d^2}{dx^2}(\sin(x)) =$$

Example 2

A ladder is 20 feet long and rests against a vertical wall. Let θ be the angle between the top of the ladder and the wall. If the bottom of the ladder slides away from the wall so that the angle increases at a rate of 1 radian/second, how fast is the bottom of the ladder moving when $\theta = \frac{\pi}{3}$?

Let x be the distance from the base of the ladder to the wall.

Trigonometric Limits

More Trigonometric Limits

More Trigonometric Limits

More Trigonometric Limits

Derivatives of Inverse Trigonometric Functions

The **arcsine**, **arccosine** and **arctangent** functions are defined as inverses of the basic trigonometric functions.

Warning: Do not confuse $\arcsin(\theta)$ with $\frac{1}{\sin(\theta)} = \csc(\theta)!$

The graphs of sin(x), cos(x) and tan(x) do not pass the Horizontal Line Test. Therefore, in order to define inverse functions, we must restrict their domains.

Arcsine

• Domain: $-1 \le x \le 1$ • Range: $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$

Arccosine

- Domain: $-1 \le x \le 1$
- Range: $0 \le y \le \pi$

Arctangent

- Domain: $-\infty < x < \infty$
- Range: $\frac{-\pi}{2} < y < \frac{\pi}{2}$

Precalculus Review

•
$$\sin(\arcsin(x)) = x$$

• $\cos(\arcsin(x)) = \sqrt{1 - x^2}$
• $\tan(\arcsin(x)) = \frac{x}{\sqrt{1 - x^2}}$

•
$$\sin(\arccos(x)) = \sqrt{1 - x^2}$$

• $\cos(\arccos(x)) = x$
• $\tan(\arccos(x)) = \frac{\sqrt{1 - x^2}}{x^2}$

х

Derivatives of Inverse Trigonometric Functions

We can find the derivative of $y = \arcsin(x)$ by implicit differentiation.

$$y = \arcsin(x)$$

$$\sin(y) = x$$
Differentiate both sides:

$$\cos(y)y' = \frac{d}{dx}(x) = 1$$

$$y' = \frac{1}{\cos(y)} = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx}(\arcsin(x)) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\arctan(x)) = \frac{1}{1+x^2}$$
$$\frac{d}{dx}(\arccos(x)) = \frac{-1}{\sqrt{1-x^2}}$$

Derivatives of Inverse Trigonometric Functions

